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Abstract

t-Butyltritylamine (1) and lithiumt-butyltritylamide (2) are introduced as readily available and useful superhin-
dered bases. © 2000 Published by Elsevier Science Ltd. All rights reserved.

Amide bases such as lithium diisopropylamide and lithium 2,2,6,6-tetramethylpiperidide have been
much used and exceedingly valuable bases in synthesis because of their solubility, basicity and steric
bulk.1 They are the principal reagents used for the stereoselective conversion of monosubstituted acetate
esters RCH2COOR0 into transoidlithium enolates (R and OLitrans) and derived silyl ethers. The more
bulky the dialkylamide base, the greater is the predominance of thetransoidproduct, with the highest
selectivities attained using the reagents lithium di-t-butylamide andt-octyl-t-butylamide (typically 98:2,
transoid:cisoid).2,3 Surprisingly, these last two bases, although highly selective and readily made, have
not come into common use — possibly because they are not commercially available. We describe herein
the synthesis of a new series of hindered amide bases incorporating the triphenylmethyl (trityl) group
which can be made very simply and economically in a single step and which are potentially cheap
commercial reagents.

The trityl group is a unique carbogenic substituent in the sense that it has the largest ‘cone angle’
compared to common tertiary groups and is readily introduced as the trityl cation at a nucleophilic site.
It was astonishing to us thatN-trityl derivatives oft-alkylamines apparently have never been reported.
In contrast, ditrityl ether (C–O–C angle, 128°)4 and ditritylmethane (C–CH2–C angle, 129°)5 are both
known as geared molecules from X-ray studies which indicate substantial sterically-induced broadening
of the key central angle from the normal values for ROR or RCH2R.

N-t-Butyl-N-tritylamine (TBTA) (1) was synthesized simply and in good yield by reaction of trityl
chloride andt-butylamine at room temperature in chloroform and obtained as crystalline solid, mp
90–91°C.6 X-Ray diffraction analysis revealed the structure shown in Fig. 1. As expected the C–N–C
angle of1 was enlarged (to 125°) and there was gearing of methyl and phenyl groups. Reaction of1
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with n-butyllithium (1 equiv.) in THF produced a solution of lithiumt-butyltritylamide (LTBTA) (2).
Sequential treatment of2 in THF at�78°C with trimethylsilyl chloride and a series of�-substituted
acetic esters produced selectively theE-trimethylsilyl ketene acetals (3) as summarized in Table 1, which
includes�-aryloxyacetic esters that normally show a strong tendency to formcisoidenolates.7

Fig. 1.

Table 1
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In contrast to the results which are detailed in Table 1, relatively poorE/Z selectivities were observed
even at�100°C with lithium diisopropylamide (LDA) or lithium tetramethylpiperidide (LTMP) andt-
butyl 4-methoxyphenylacetate (4) as shown in Table 2. In fact, the use of the still bulkier base lithium
t-butyl-t-octylamide produced5 with anE/Z ratio of only 5/1. It is clear that with oxyacetate esters such
as 4 and the analogous substrates listed in Table 1 have an inherent tendency to formZ-silyl ketene
acetals because of the availability of a chelation control pathway (see Fig. 2). This tendency is much less
suppressed by the bases listed in Table 2 (LDA and LTMP) than with lithiumt-butyltritylamide (2), a clear
measure of the superior effective bulk of2. Here it should be noted that witht-butyl 2-pyridyloxyacetate,
the substrate in entry 5 of Table 1, the tendency to react via the chelation pathway is so strong that it
cannot be overcome even with2 as base, with the result that aZ/E ratio of silyl ketene acetals of >50/1 is
produced.

Table 2

Fig. 2.

The data presented above shows thatt-butyltritylamine (1) and lithiumt-butyltritylamide (2) are readily
available, relatively inexpensive,8 superhindered bases which could be widely useful in synthesis. The
method used for the synthesis of1 was also applied to the synthesis of other potentially valuable bulky
N-tritylamines. Thus, the chiral secondary amines6 and7 were readily prepared as colorless crystalline
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solids from trityl chloride and (R)-1-phenylethylamine andexo-isobornylamine. X-Ray crystallographic
analysis of single crystals of6 and7 revealed C–N–C angles of 118° and 120.7°, respectively, i.e. about
5° smaller than for the ditertiary amine1.9,10
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